- Home
- Standard 11
- Physics
એક વિદ્યાર્થી આપેલા સમયમાં શરૂઆતમાં સ્થિર રહેલા પદાર્થના મુક્ત પતન દરમિયાન કાપેલા અંતરને માપે છે. તે આ માહિતીનો ઉપયોગ કરીને $g$, ગુરુત્વાકર્ષણના પ્રવેગનો અંદાજ કાઢે છે. જો અંતર અને સમયના માપનમાં મહત્તમ પ્રતિશત ત્રુટિ અનુક્રમે $e_1$ અને $e_2$ હોય, તો $g$ ના અંદાજમાં પ્રતિશત ત્રુટિ કેટલી હશે?
$e_2-e_1$
$e_1+2{e_2}$
$e_1+e_2$
$e_1-2{e_2}$
Solution
From, the, relation
$h = ut = \frac{1}{2}g{t^2}$
$h = \frac{1}{2}g{t^2}$$ \Rightarrow g = \frac{{2h}}{{{t^2}}}$ (body, initially, at, rest)
Taking, natural, log aritham, on, both, sides, we, get
$In\,g = In\,h – 2\,In\,t$
Differentiating, $\frac{{\Delta h}}{g} = \frac{{\Delta h}}{h}\, – 2\,\frac{{\Delta t}}{t}$
For, max imum, permissible, error,
or,${\left( {\frac{{\Delta g}}{g} \times 100} \right)_{\max }} = \left( {\frac{{\Delta h}}{h} \times 100} \right) + 2 \times \left( {\frac{{\Delta t}}{t} \times 100} \right)$
According, to, problem
$\frac{{\Delta h}}{h} \times 100{ = _{{e_1}}}\,and\,\frac{{\Delta t}}{t} \times 100{ = _{{e_2}}}$
Therefore, $( {\frac{{\Delta g}}{g} \times 100} )_{\max } = {e_1} + 2{e_2}$
Similar Questions
રાષ્ટ્રીય પ્રયોગશાળામાં આવેલી પ્રમાણભૂત ઘડિયાળ સાથે બે ઘડિયાળોનું પરીક્ષણ કરવામાં આવે છે. પ્રમાણભૂત ઘડિયાળ જ્યારે બપોરના $12:00$ નો સમય દર્શાવે છે ત્યારે આ બે ઘડિયાળના સમય નીચે મુજબ મળે છે :
ઘડિયાળ $1$ | ઘડિયાળ $2$ | |
સોમવાર | $12:00:05$ | $10:15:06$ |
મંગળવાર | $12:01:15$ | $10:14:59$ |
બુધવાર | $11:59:08$ | $10:15:18$ |
ગુરુવાર | $12:01:50$ | $10:15:07$ |
શુક્રવાર | $11:59:15$ | $10:14:53$ |
શનિવાર | $12:01:30$ | $10:15:24$ |
રવિવાર | $12:01:19$ | $10:15:11$ |
જો તમે કોઈ પ્રયોગ કરી રહ્યાં હોય જેના માટે તમને ચોકસાઈ સાથે સમય અંતરાલ દર્શાવતી ઘડિયાળની આવશ્યકતા છે, તો આ બે પૈકી કઈ ઘડિયાળ લેવાનું મુનાસિબ માનશો ? શા માટે ?